Два вида измеримых скоростей в Специальной теории относительности.Фактически в природе существует два вида измеримых скоростей, основанные на разных методах измерения. Поскольку обе эти скорости измеримы, то значит они обе реальны. Измеримость здесь следует понимать в более широком смысле: речь идет не просто об измерении скорости с помощью линеек и часов, а воздействуем одного объекта на другой объект, со всеми вытекающими физическими последствиями. Взгляните еще раз на рисунок, и мысленно прочувствуйте два вида скорости. Собственная скорость не менее физична, чем координатная скорость. Как мы увидим далее, обе скорости дополняют друг друга. Выбрасывать собственную скорость из физики подобно отказу от косинуса в геометрии; а точнее, из СТО выброшен синус гиперболический: sh(ρ/c)=b/c, где ρ- третий вид скорости, быстрота.., или тангенс тригонометрический tg(vq/c)=b/c, где vq- четвертый вид скорости, квантуемая скорость. Много скоростей? Не пугайтесь. Все эти скорости есть лишь функции единого темпа движения. Аналогичная картина в геометрии. Есть угол поворота. И есть функции угла поворота: sin, cos, tg, ctg... Координатная и собственная скорость измеримы, а быстрота и квантуемая скорость легко вычисляемы.
Но дает ли большую ясность введение двух измеримых скоростей в физике? Давайте посмотрим, к чему это приведет. А для этого дадим более точные формулировки для этих разных скоростей. Координатная скорость. Для её определения необходимо наличие системы координат и совокупности синхронизированных часов, покоящихся в разных точках системы. Координатной скоростью точки, при её равномерном и прямолинейном движении, называется отношение пути, пройденного точкой, к координатному времени её движения. Координатное время движения есть разность показаний часов, синхронизированных между собой, и, покоящихся в начальной и конечной точках пути. Собственная скорость. Для её определения необходимо наличие системы координат и часов, связанных с движущимся предметом. Собственной скоростью тела, при его равномерном и прямолинейном движении, называется отношение пути, пройденного телом, к собственному времени его движения. Собственное время движения есть разность показаний одних и тех же часов, связанных с движущимся телом. Координатную скорость используют в физике и называют её просто скорость: v=dr/dt; v=vxi+vyj+vzk. Собственное время используют в физике. Его обозначают буквой τ, и интервал собственного времени оказывается меньше интервала координатного времени в γраз: dτ = dt/γ = dt·(1-v2/c2)1/2. Собственную скорость используем все мы, и тоже называем её скоростью. В физике эта величина соответствует пространственной части четырехмерного вектора скорости. Собственная скорость не ограничивается значением координатной скорости света, с=299792458м/с. Собственная скорость света равна бесконечности. Обозначим собственную скорость движения некоторого тела буквой b. Тогда b = dr/dτ;
Модулю координатной скорости света в английском языке соответствует слово speed. Слово velocity является его синонимом, и его чаще применяют во всех остальных случаях. В русском языке и то, и другое слово переводится как скорость. Однако, замечаем, что прибор, с перекочевавшим к нам названием "спидометр", меряет не совсем то, о чем говорит его название. Фактически он меряет не модуль координатной скорости, а модуль собственной скорости. Пускай длина окружности покоящегося колеса автомобиля будет равна одному метру. Если автомобиль движется, то длина этой окружности сокращается. Но относительно системы координат, связанной с дорогой, нижняя часть колеса, контактирующая с дорогой, не движется. Тогда, если колесо автомобиля делает десять оборотов в секунду, то автомобиль перемещается на 10 метров. И его координатная скорость будет равна 10 м/с. Но показания спидометра будут чуть-чуть больше. Действительно, валик спидометра делает те же десять оборотов за секунду по часам, связанным с дорогой. А в автомобиле этот промежуток времени будет меньше в γраз меньше. Спидометр находится в машине, "его часы" тоже замедляются и он показывает не координатную скорость, а собственную. В этом случае имеем: v =10м/с; Разница мизерна, но смысл в том, что спидометр меряет не то, о чем говорит его название. Коэффициент γ, приводящий к сокращению длин, замедлению времени и т.п., может быть выражен и через координатную скорость, и через собственную: γ = 1/(1-v2/c2)1/2 = (1+b2/c2)1/2. Координатная и собственные скорости могут быть выражены симметрично друг через друга: b = vγ
= v/(1-v2/c2)1/2; И координатная и собственная скорость измеримы, но в физике есть еще одна скорость: быстрота. Вперёд: Параметр быстроты и быстрота. |
23 Марта 2009. Оказывается собственную скорость изобрели раньше меня да еще и назвали точно также. Более того, обычную скорость уточнили так же как и я, и назвали "координатная скорость". Не иначе списали с моего сайта, но я и этому рад. Шучу, конечно. С 2007-го года у меня есть еще одна скорость - "квантуемая скорость". Ее еще можно назвать тригонометрическая, если быстроту переименовать симметрично в гиперболическую скорость. Квантуемая скорость характеризует поворот в пространстве-времени, - дает минимальный квант, указывает на структуру пространства-времени. Вот выдержка из Википедии о собственной скорости: (В перевод для избежание путаницы я вношу свои обозначения величин.) Собственная скорость. Из Википедии.[12]Собственная скорость, т.е. путь, пройденный за единицу времени, по часам путешественника, равняется координатной скорости при малых скоростях. При любых скоростях она равна импульсу единичной массы, и поэтому не имеет верхнего предела. Это одна из трех производных в специальной теории относительности (координатная v, собственная b и Лоренц-фактор γ) которые описывают темп движения. Каждая из этих величин легко связывается с гиперболическим скоростным углом или быстротой ψ. (Добавим сюда еще квантуемую скорость q соответствующую тригонометрическому повороту на угол Q в пространстве-времени. е понял, что это. Не путать с углом поворотом осей, Ф.)В плоском пространстве-времени собственная скорость есть отношение пройденного пути по заранее размеченной карте к собственному времени τ истекшему по часам путешествующего объекта. Она равна импульсу объекта деленному на его массу покоя, и представляет собой пространственно-подобные компоненты четырех-скорости объекта. В монографии Уильяма Шурклиффа (William Shurcliff)[1] упоминается о её раннем исользовании в текстах Сирса и Брехме (Sears and Brehme). Фрондорф (Fraundorf) исследовал её педагогическую ценность[3] а Унгар, Байлис и Хестенес (Ungar[4], Baylis[5] and Hestenes[6]) проверили её в групповой теории и в перспективах геометрической алгебры. Собственную скорость иногда связывают с быстротой[7]. В оригинале написано слово celerity, что означает быстрота. В английском языке есть еще одно слово с этим же значением быстроты, - rapidity, ψ. В отличие от более известной координатной скорости, собственная скорость полезна при описании в супер-релятивистских и около-релятивистских движений. Подобно координатной скорости, но в противоположность четырех-скорости, она базируется на трехмерном срезе пространства времени с помощью карты. Это делает её более полезной в инженерных приложениях с применением карт и менее полезной для получения бескартного образа... ...Координатная скорость электрона с энергией 250 GeV которую он будет
иметь на
Во, блин! Мало им LHC, уже думают об ILC. Собственная скорость также полезна для сравнения релятивистских скоростей движущихся вдоль одной линии с высокой скоростью. В этом случае bAC = γABγBC(vAB+vBC) где A, B и C относятся к различным объектам или системах отсчета[10]. К примеру bAC есть собственная скорость объекта А относительно объекта С. Следовательно каждый из двух электронов (A и C) в лобовом столкновении с энергиями по 45 ГэВ, относительно лабораторной системы, увидят приближение друг друга со скоростями vAC ~c и bAC = 880002(1+1) ~1.55×1010 световых секунд в секунду. Так коллайдеры могут помочь исследовать высоко скоростные столкновения... Землю они могут уничтожить, эти коллайдеры. Кстати для протонов на LHC, при энергиях по 7 ТэВ, относительные скорости столкновений будут: v~c и b=49000000с. 1. W. A. Shurcliff (1996) Special relativity: the central ideas (19 Appleton
St, Cambridge MA 02138)
|
К оглавлению Космической Генетики.
darkenergy@yandex.ru Иван Горелик